
Los Alamos
NATIONAL LABORATORY

LA-UR-

Approved for public release;

distribution is unlimited.

Title:

Author(s):

Submitted to:

Form 836 (8/00)

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the University of California for the U.S.

Department of Energy under contract W-7405-ENG-36. By acceptance of this article, the publisher recognizes that the U.S. Government

retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S.

Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the

auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher’s right to

publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.

02-6057

An Automated Regression Testing and Verification System
for ParSim (Parallel Architecture Simulation Framework)

Nick Moss

world wide web

An Automated Regression Testing and Verification System for

ParSim (Parallel Architecture Simulation Framework)∗

Nick Moss - nickm@lanl.gov
Modeling, Algorithms, and Informatics Group

Los Alamos National Laboratory

November 4, 2002

Abstract

The Parallel Architecture Simulation Framework (ParSim), like any other software
of large scale, requires considerable efforts in verification and validation. ParSim, built
on Dartmouth Scalable Simulation Framework (DaSSF), which in turn uses Domain
Modeling Language (DML) facilitates a solution by separating models and runtime
parameters from implementation. Through this design it is possible to simulate a wide
variety of architectures while sharing the same code base. Test cases are simply an
extension of this separation—we validate output from a set of predefined models and
runtime parameters and throughout changes to the code base, test to ensure that their
output remains consistent, either exactly or according to some criterion. This document
discusses the design and usage of a modular system that automates this process and
provides a flexible framework for specification and execution of test procedures.

1 Introduction

ParSim is an ongoing project to produce high fidelity simulations[1] of ASCI/Extreme-scale
(more than one thousand processors) parallel architectures with an end goal of providing
predictive capability in the evaluation of existing and hypothetical architectures, and the
performance of programs run on them. We model machines as constructed from a set of
basic components including switches, nodes, and network interface cards. The components
approximate their real counterparts in varying levels of detail and include parameters for
bandwidth, transmission delay, and others in the case of switches; for nodes and network
interface cards possible parameters include packet size, routing methods, and others which
determine messaging behavior. The underlying network is modeled at the packet level and
based on the Quadrics Elan 3 protocol. Message and packet transmission through the
simulated network, and the trace events generated through this process, provide useful data
for analyzing performance. Another approach, using ParSim’s direct execution feature,
allows any MPI program to execute on the simulated machine as if it were executed on the
actual machine. Because performance is highly dependent on applications and how well

∗This work was funded by the Department of Energy under ASCI Discom2

1

they run in a parallel environment, direct execution is a powerful method of analysis in the
evaluation of hypothetical architectures.

1.1 Framework and Implementation

ParSim is built on Darthmouth Scalable Simulation Framework[2], a C++ implementa-
tion of the Scalable Simulation Framework specification (SSF). DaSSF is well suited for
discrete event simulations of large scale such as those we are interested in studying. The
SSF specification originally envisioned simulating the Internet and other massive dynamic
networks, and for ParSim, where the network is a central component, the SSF API is a
natural fit. ParSim component classes define network components, routing methods, mes-
sages, packets and other constructs. They are implemented in C++ and derived from the
base classes defined by the SSF specification: Entity, Event, Process, Input Channel, and
Output Channel.

1.2 DML

A model may be constructed by instantiating components within C++ code, but DaSSF pro-
vides a better approach using the Domain Modeling Language (DML), which isolates model
specification from implementation. DML is a generic syntax which supports recursive-like
nesting of submodels, or subsections of DML code, and relatively convenient specifica-
tion of large structures. DaSSF adapts the generic DML syntax, adding various exten-
sions and defining its semantics. DaSSF uses DML for specification of runtime parameters
runtime.dml, runtime architectures machine.dml, and most significantly, model construc-
tion model.dml.

2 Overview

ParSim is capable of simulating a diverse range of architectures. The architectures may
be large and complex but are all composed from a common set of components. Different
configurations and paramerization options exist for nodes, network interface cards, and
switches, and other ParSim components, but are derived from a common implementation.
It is important to ensure that, in the course of development, as we make changes that can
have wide-ranging effects and that seem to have the desired effect in some limited scope,
they not introduce irregularities in other systems. For this reason, and for the size and
complexity in general of the ParSim system, verification is vital.

The verification process includes a large set of test models or test cases. We validate
the output of these models, in some cases by hand checking or through some automated
process. After changes to implementation code we recompile ParSim and execute with these
test models, checking their output against the validated output.

3 Test Program Design

The modularity provided to ParSim through DaSSF’s use of DML enables an efficient
solution to the implementation of a automated system for execution of test processes. The

2

model.dml file is a complete ParSim model which contains a series of DML statements that
parameterize basic components, Node, NIC, and Switch, and their interconnections. The
example below illustrates a trivial model

ENTITY [

INSTANCEOF "Node"

PARAMS [

INT 0

]

]

ENTITY [

INSTANCEOF "NIC"

PARAMS [

INT 1

]

]

ENTITY [

INSTANCEOF "Switch"

PARAMS [

INT 2

]

]

MAP [FROM 0(NETOUT) TO 1(NETIN) DELAY 1]

MAP [FROM 1(NETOUT) TO 0(NETIN) DELAY 1]

MAP [FROM 1(NETOUT) TO 2(LINKIN0) DELAY 1]

MAP [FROM 2(LINKOUT0) TO 1(NETIN) DELAY 1]

The runtime.dml file contains runtime parameters and globals such as simulation interval,
output options, and other ParSim-specific settings. For example

EXECUTABLE "parsim3"

MODEL "model.dml"

MACHINE "machine.dml"

STARTTIME 0

ENDTIME 2e+08

ENVIRONMENT [

LOG_STYLE "IMMEDIATE"

LOG_MASK "ERROR WARNING INFO"

DATA_STYLE "AT WRAPUP"

DATA_MASK "INFO"

EPILOG_STYLE "IMMEDIATE"

EPILOG_FILE "output.elg"

WORKLOAD "TestWorkload"

NETWORK "MFQuadrics"

FIRST_NODE 0

FIRST_NIC 100000

FIRST_SWITCH 200000

MPI_COMM_SIZE "64"

]

DATAFILE "output"

3

3.1 Test Cases

A test case is simply a model and a collection of runtime parameters, provided in the
model.dml and runtime.dml files. The test suite contains a collection of test cases, some
simple and others complex, which simulate important mechanisms and behavior in ParSim
systems and whose output is included in the verification process.

3.2 Execution Output and Source Reference Data

Execution of an input model with a given set of runtime parameters produces

ID Time Location Action Source Target Size Type

0:1 10 0 MessageSent 0 1 100 Null

0:1 13 10000 MessageReceived 0 1 100 Null

0:1:1 526.513 10000 PacketSent 0 1 100 Head

0:1:1 543.513 20000 PacketReceived 0 1 100 Head

0:1:1 562.513 20000 PacketSent 0 Null 100 Head

0:1:1 575.513 10001 PacketReceived 0 Null 100 Head

0:1:1 686.114 10000 PacketSent 0 Null 0 AckNow

0:1:1 703.114 20000 PacketReceived 0 Null 0 AckNow

...

whose output traces message and packet transmission through the simulated network for
a given interval. We store execution output from the validated models to use as source
reference data in the verification process.

3.3 Test Modules

Test modules at this level are a sort of abstract entity. We pass as input the execution
output from the current test model and the source reference data relevant to that test case.
The test module may perform any sort of verification in comparing source reference data to
execution data and outputs pass or fail and additional information, warnings, reasons for
failure, etc.

4 Test Program Organization

The test program files are included in the ParSim source directory and organized as:

rtest

rtest.config

config/out

config/models

config/runtime

config/source

config/test_modules

where rtest is typically executed from the ParSim source directory and config contains
subdirectories for execution ouput, test models, runtime parameters test models, source
reference output, and test modules, respectively.

4

The rtest program is responsible for coordinating the regression test process and de-
termines which models are to be included in the test group, calling make to compile ParSim
with a particular test model and runtime parameters, execution, collection of output, and
finally, calling testing modules to peform verification procedures.

4.1 Configuration

rtest.config is a DML-like, whitespace-delimited key/value configuration file. In the
following example

MODELS testA, testB, testC, testD

MODELS_DML_PATH src/dml

MAKE_CLEAN 0

MODELS DML PATH sets the directory containing the models to be included in the tests.
MODELS is a comma-delimited list of test cases that correspond the models in config/models
MAKE CLEAN is a boolean flag indicating whether or not to execute make clean prior to
compilation.

4.2 Runtime Parameters

Runtime parameters may be applied to a general set of test models or individually.
For example, default.runtime.dml is applied to all test cases, with the exception
of one particular test model, testA.dml that requires different parameters included in
config/runtime/testA.runtime.dml. The system uses a systematic naming convention
to determine runtime paramters, source reference data and test modules, the details of this
are outlined in next section.

4.3 File Naming Conventions

Appropriate test modules, runtime parameters, and source reference data are selected ac-
cording the following naming convention

<default or all or model name>.module name.context
For example, possible names for runtime parameters are

default.runtime.dml

all.runtime.dml

testA.runtime.dml

where default specifies the default runtime paramaters for a test case unless bypassed
by all or when runtime parameters exist for a specific model. The all prefix is used in a
similar way but is never overriden.

4.4 Test Modules

The test program does not define or restrict the exact operation of the test module or
test script but provides a standard mechanism for their execution. rtest determines
which test scripts to use based on the named test models in the configuration according the

5

naming convention outlined above. rtest executes matching test scripts and passes them
the source reference data and output from the current execution. Output from the script is
expected to be 0 in cases of ”pass”, with any number of arbitrary results printed to stdout.
Test module output is stored separately for each test case along with any other output from
their execution. The script may written in any language and can perform any sort of testing
so long as it conforms to the input and pass/non-pass output interface expected by rtest.

Following the naming convention ensures that the test script will be called in the correct
context. The script is called passing the two inputs as

test_script <source_file> <output_file>

where source file is the predefined source data file supplied from config/source and
output file contains output data from the current test case. Minimally, the script processes
output file and in most cases also examines source file. Through this mechanism it possible
to implement a wide variety of comparisons and constraints verification tests.

4.5 Test Module Implementation

The example below implements a simple diff test module, written in Perl which uses the
standard UNIX diff

#!/usr/bin/perl

my($source, $out) = @ARGV;

my $output = ‘diff -bw --minimal $source $out‘;

my $return_code = $?;

print $output;

if($return_code){

exit(1);

}

4.6 Program Output

Execution of rtest on two test modules testA and testB produces

building testA

finished building testA

finished executing parsim3-X86-LINUX

all.diff.test: PASS.

building testB

finished building testB

finished executing parsim3-X86-LINUX

all.diff.test: FAILED. Details in: config/out/testS.all.diff.test

pass = 1

fail = 1

At the bottom, a count states the total number of test cases (which includes net result
for all test modules) that passed or failed with details for each test. For testB, as noted,
the output of diff (generated from the print statement in the script above is recorded in
config/out/testS.all.diff.test)

6

References

[1] The à la carte Project. Design and Implementation of Low- and Medium-Fidelity Net-
work Simulations of a 30-TeraOPS System. Los Alamos National Laboratory, April
2002.

[2] Jason Liu and David M. Nicol. Dartmouth Scalable Simulation Framework User’s Man-
ual. Dartmouth College, Department of Computer Science, August 2001.

7

	Introduction
	Framework and Implementation
	DML

	Overview
	Test Program Design
	Test Cases
	Execution Output and Source Reference Data
	Test Modules

	Test Program Organization
	Configuration
	Runtime Parameters
	File Naming Conventions
	Test Modules
	Test Module Implementation
	Program Output

	References

